
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP012008
TITLE: On Properties of Contours of Trilinear Scalar Fields

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: International Conference on Curves and Surfaces [4th], Saint-Malo,
France, 1-7 July 1999. Proceedings, Volume 2. Curve and Surface Fitting

To order the complete compilation report, use: ADA399401

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP011967 thru ADPO12009

UNCLASSIFIED



On Properties of Contours of
Trilinear Scalar Fields

Holger Theisel

Abstract. We study properties of contour surfaces of trilinear scalar
fields, and give a classification based on how many unconnected surface
parts they consist of. Furthermore, we introduce the concept of the seg-
ment number of a voxel. The segment number is a threshold-independent
measure which estimates how complicated the contours inside the voxel
are expected to be. Finally, we give necessary and sufficient conditions for
a voxel to have a segment number of 1. These conditions are applied to
analyze a computer tomography data set.

§1. Introduction

Contours (isosurfaces) of trilinear scalar fields are treated in a variety of appli-
cations. For instance, the data used in volume visualization usually consists
of a number of scalars defined at certain grid points; between the grid points
a piecewise trilinear interpolation of the scalar field is applied.

Given a voxel V = [0, 1]3, the trilinear scalar field is defined by setting
the values cijk(i,j, k E {0, 1}) of the field at the corners of V. Then the scalar
field is defined as

s(u,v,w) (1- u). (1- v). (1- w) cooo + (1-u). (1- v) . w . co

+ (1-u).v. (1- w) "col + (1- u).v w co11(1)

+ u. (1 - v). (1 - w). c1 0 + u (1 - v).w clol

+ u v. (1 - w). Cll +u'v'w" Cu v.

Figure la illustrates this. A contour of V is defined by s(u, v, w) = r =const
for a certain threshold r. Figure lb shows an example of a contour of (1).

There are a number of algorithms to produce a triangular approximation
of a contour of (1). Of these, the Marching Cubes (MC) method ([3] and [4])
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Fig. 1. a) Voxel V; b) a contour in V; c) result of MC.

is the most popular. Figure lc shows the resulting triangular approximation
of the contour shown in Figure lb using the Marching Cubes method.

The Marching Cubes algorithm distinguishes several cases where some of
them are harder to treat than others. In this paper we introduce a measure
of how costly in terms of computing time the MC algorithm inside a certain
voxel is expected to be. This characterization of a voxel - called segment
number - is independent of a particular threshold. It estimates the costs of a
Marching Cubes algorithm for varying thresholds.

As already stated in [2], the contour of (1) is a rational cubic surface. In
[2] this surface is approximated by a collection of rational quadratic triangular
patches.

Section 2 of this paper studies the contours of (1) in the domain 1R3.
We give a classification based on how many unconnected surface parts the
contours consist of. Sections 3 and 4 focus on contours of (1) inside a certain
voxel. Section 3 introduces the concept of segment number as a measure of
how simply a voxel can be treated by an MC algorithm. In Section 4, necessary
and sufficient geometric conditions for a voxel to have a segment number of
1 are shown. In Section 5, the number of voxels with a segment number of 1
are computed for a real volume data set.

§2. Classification of the Contour in R 3

In this section we consider the contour of (1) not in a particular voxel but in
the domain R 3. In general, the contour consists of a number of surface parts
which are not connected to each other. Before we classify the contours of (1)
by the number of unconnected surface parts, we apply a translation of the
coordinate system as shown in Figure 2. Choosing

p = Cool + •olo + ClO0 + ci1 - cO00 - coil - C1ol - Clio( Cooo + Coil - Cool - Colo
1/

Po = - C000 + Ciol -Cool- Cloo

Cooo + Clio - colo - eo00

we obtain for (1)

s =a.u+b.v+c.w+d.u.v w+e (2)
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Fig. 2. Translating the coordinate system of a voxel.

with

(ci1 - co11) (cloo - C000) - (Cllo - Coo) (c1I01 - coo 1)
a =

p

b (ciii - c101) (co1o - c000) - (ci1o - c100) (coil - cool)
p

(cll1 - clio) (cool - co00) - (clol - c1oo) (coil - Colo)
p

d p,

where e is a certain constant. Thus, we only have to analyze

s(u,v,w) = a.u + b.v +c.w + d. u.v.w = r = const (3)

in ]R3 . A classification of (3) can be achieved by rewriting (3) as w = -au-db.v

and comparing the zeros of the numerator and denominator function. The

zeros of the numerator function form a line in the u - v-plane, whereas the

zeros of the denominator function give a hyperbola. Studying their interplay

gives the following classification:

case 1: abcd < O,d 5 0 :

case 1.1: r 2 > _4-__: (3) gives 3 unconnected surface parts

case 1.2: r 2 < -4b: (3) gives 2 unconnected surface parts

case 2: abcd < 0: (3) consists of 1 connected part

case 3: abcd= 0,d # 0:

case 3.1: r 0 0 :
case 3.1.1: ab 54 0, c = 0: (3) gives 2 unconnected surface parts

case 3.1.2: a • 0, b = c = 0: (3) gives 3 unconnected surface parts

case 3.1.3: a = b = c = 0: (3) gives 4 unconnected surface parts

case 3.2: r = 0

case 3.2.1: ab # 0, c = 0: (3) gives 3 unconnected surface parts

case 3.2.2: a 5 0, b = c = 0: (3) gives 3 parts intersecting each other

case 3.2.3: a = b = c = 0: (3) gives 3 perpendicular planes.

Figure 3 illustrates these cases.
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Fig. 3. Classification of the contours of (3) in 1R3

§3. Segment Number of a Voxel

We now study the contour of (3) in a particular voxel V = [uO, u0 + 1] x
[v0, v0 + 1] x [wo, w0 + 1]. Unfortunately, the results of Section 2 are not
directly applicable here because one connected surface part may intersect V
more than once.

Varying the threshold r in (3), the contours change. So does the number
of unconnected surface parts of the contour.

Definition 1. Given the trilinear scalar field s(u, v, w) = a . u + b. v + c . w +
d. u. v. w in the domain of the voxel V = [uo, uo + 1] x [vo, vo + 1] x [wo, wo +1],
the segment number S(V) of V is the maximal number of unconnected surface
parts of the contour s(u, v, w) = r =const in V for any threshold r.

Figure 4 gives an example of a voxel V with S(V) = 1. Increasing the
value of r, the isosurface "moves" through the voxel. It consists of at most
one connected part for any r. Figure 5 shows a voxel with S(V) = 4. Here
the contours consist of up to 4 unconnected parts.

The segment number is a threshold-independent characterization of a
voxel V. For any V we get S(V) E {1,2,3,4}. For visualization purposes,
voxels with a segment number 1 are of particular interest. As shown in the
example of Figure 4, they have a nice behavior while varying r. In fact, for
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Fig. 4. Contours of a voxel with S(V) = 1.

r=0.5rr0.76_-.r_0.

Fig. 5. Contours of a voxel with S(V) = 4.

any r the contour consists of only one connected surface part inside V. Thus,
accelerated Marching Cubes methods may apply to them. Moreover, adjacent
voxels with S(V) = 1 may be merged to form one bigger voxel before applying
Marching Cubes methods. So it makes sense to search for geometric conditions
for a voxel V to have S(V) = 1.

§4. Geometric Conditions for S(V) = 1

In this section we give necessary and sufficient geometric conditions for a
voxel to have S(V) = 1. Again, we consider the contour of (3) in the voxel
V = [uo, uo + 1] x [vo, v0 + 1] x [wO, wo + 1].

To formulate the conditions for S(V) = 1, we need to introduce the
concept of characteristic hyperbolas. The first characteristic hyperbola h, in
R 3 is defined by the condition s, (u,v,w) = 0 in (3). h, can be written as a
rational quadratic B1zier curve described by two control vectors bl, bl and a
control point bl (see [1]). For hi we obtain

= ((=,) ,b= (0 W

bl ) , = (~00 , l = ~1/b) W
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Fig. 6. Location of characteristic hyperbolas; a),b): abcd < 0; c),d): abcd > 0.

where wi is the weight of bl. Then we obtain

b°B2(t) + wlb B2(t) + b1B2(t)

h i~~ t) =B 11 (t )

In a similar way we define the characteristic hyperbola h 2 by s ,(u, v, w) = 0,
and h3 by s, (u,v, w) = 0. The B6zier point b2 with the corresponding weight
w• and the control vectors bh, b2 describing h 2 are

b0= (-4ac)/d , b, = , b2= (0 w=1.

0 0 1/c

h3 is described by

b3 0 , 3= (0) , b3 = 11b W3 w = .

0 (-4abo)/d)

If a • b• c •d < 0 then hl, h 2, h 3 intersect in two common points. Figures 6a
and 6b illustrate this situation from two different viewpoints. If a . b . c d > 0,
then hl, h 2, h 3 do not have any intersections. Figures 6c and 6d show this
from different viewpoints. The degenerate case a -b . c . d = 0 is omitted here.

To formulate conditions for S(V) = 1, we have to classify the faces of V.
Given the voxel V = [uo, uo + 1] x [vo, vo + 1] x [wo, wo + 1], let f 1 = {(u, v, w) c
V:u=uoVu=uo+l}, f 2 = {(u,v,w) E V :v=voVv =v o + l}, and
f3 = {(u, v, w) E V : w = wo V w = wo + 1}. See Figure 7 for an illustration
of the faces.

Theorem 1. Let V = [uo, uo + 1] x [vo, vo + 1] x [wo, wo + 1] be a voxel in
the scalar field defined by (3). Then the condition S(V) = 1 is equivalent to
the three conditions h, n fI = 0 and h 2 n f 2 = 0 and h 3 n f 3 = 0.

Figure 8 illustrates the idea of the proof. Suppose h 3 intersects f 3 as
shown in Figure 8a. Figure 8b is a magnification of the voxel and h 3 in
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Fig. 7. The faces f1, fh2, f 3 of a voxel.
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Fig. 8. Proof idea of Theorem 1.

Figure 8a. We compute the intersection point of h3 and f3, and consider
the contour passing through this point. As shown in Figure 8a, this contour
consists of at least two surface parts.

For the proof of the converse statement of Theorem 1, we assume that for
a certain threshold r the contour consists of at least two unconnected surface
parts. Then we can find a face of V which has two intersection curves with the
contour. (In the worst case we have to vary r to find such a face). (Figure 8c
shows two surface parts of the contour which produce two intersection curves
in the upper face of fN). Then we can find a point on this face which is the
intersection point with the corresponding characteristic hyperbola. (In Figure
8c, the marked point on the upper part of f3 is the intersection with h3 ).

§5. Results and Future Work

We have tested the voxels of a CT test data set for the property S(V) = 1.
The data set consists of 255 x 255 x 108 = 7,022,700 voxels. Figure 9 shows
a slice through the data set.

In the raw data we found 1,978,711 voxels with S(V) = 1 (28 %). After
some noise reducing filter operations on the data, we detected 4,833,063 voxels
with S(V) = 1 (69 %). This shows that there is a reasonable number of voxels
with S(V) = 1 to pay special attention to them.

In the future we plan to develop algorithms to merge voxels with S(V) = 1
to form bigger voxels before starting the Marching Cubes algorithm.



410 H. Theisel

Fig. 9. Slice through the test data set.

Acknowledgments. The author would like to thank Prof. Heidrun Schu-
mann from the University of Rostock for her constant support and encourage-
ment of this work.

References

1. Farin, G., NURB Curves and Surfaces, A K Peters, Wellesley, 1995.

2. Hamann, B., I. J. Trotts, and G. Farin, On approximating contours of the
piecewise trilinear interpolant using triangular rational quadratic B1zier
patches, IEEE Transactions on Visualization and Computer Graphics,
3(3) (1997), 215-227.

3. Lorensen, G. M. and H. E. Cline, Marching Cubes: a high resolution 3D
surface reconstruction algorithm, Computer Graphics 21 (1987), 163-169.

4. Nielson, G. M. and B. Hamann, The asymptotic decider: resolving the
ambiguity in marching cubes, proceedings IEEE Visualization 91, 1991,
83-91.

Holger Theisel
University of Rostock, Computer Science Department
PostBox 999, 18051 Rostock, Germany
theiselcinformatik. uni-rostock .de

http //wwwicg. informat ik. uni-rostock. de/-theisel/


